Somato-Motor Haptic Processing in Posterior Inner Perisylvian Region (SII/pIC) of the Macaque Monkey

نویسندگان

  • Hiroaki Ishida
  • Luca Fornia
  • Laura Clara Grandi
  • Maria Alessandra Umiltà
  • Vittorio Gallese
چکیده

The posterior inner perisylvian region including the secondary somatosensory cortex (area SII) and the adjacent region of posterior insular cortex (pIC) has been implicated in haptic processing by integrating somato-motor information during hand-manipulation, both in humans and in non-human primates. However, motor-related properties during hand-manipulation are still largely unknown. To investigate a motor-related activity in the hand region of SII/pIC, two macaque monkeys were trained to perform a hand-manipulation task, requiring 3 different grip types (precision grip, finger exploration, side grip) both in light and in dark conditions. Our results showed that 70% (n = 33/48) of task related neurons within SII/pIC were only activated during monkeys' active hand-manipulation. Of those 33 neurons, 15 (45%) began to discharge before hand-target contact, while the remaining neurons were tonically active after contact. Thirty-percent (n = 15/48) of studied neurons responded to both passive somatosensory stimulation and to the motor task. A consistent percentage of task-related neurons in SII/pIC was selectively activated during finger exploration (FE) and precision grasping (PG) execution, suggesting they play a pivotal role in control skilled finger movements. Furthermore, hand-manipulation-related neurons also responded when visual feedback was absent in the dark. Altogether, our results suggest that somato-motor neurons in SII/pIC likely contribute to haptic processing from the initial to the final phase of grasping and object manipulation. Such motor-related activity could also provide the somato-motor binding principle enabling the translation of diachronic somatosensory inputs into a coherent image of the explored object.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial segregation of somato-sensory and pain activations in the human operculo-insular cortex

The role of operculo-insular region in the processing of somato-sensory inputs, painful or not, is now well established. However, available maps from previous literature show a substantial overlap of cortical areas activated by these stimuli, and the region referred to as the "secondary somatosensory area (SII)" is widely distributed in the parietal operculum. Differentiating SII from posterior...

متن کامل

Single Neurons in the Insular Cortex of a Macaque Monkey Respond to Skin Brushing: Preliminary Data of the Possible Representation of Pleasant Touch

Pleasant touch may serve as a foundation for affiliative behavior, providing a mechanism for the formation and maintenance of social bonds among conspecifics. In humans, this touch is usually referred to as the caress. Dynamic caressing performed on the hairy skin with a velocity of 1-10 cm/s is perceived as being pleasant and determines positive cardio-physiological effects. Furthermore, imagi...

متن کامل

Receptive field properties of the macaque second somatosensory cortex: representation of orientation on different finger pads.

Orientation tuning has been studied extensively in the visual system, but little is known about it in the somatosensory system. Here we investigate tuning in the second somatosensory (SII) region using a motorized stimulator that presented a small oriented bar to the 12 finger pads of digits 2-5 (D2-D5) of the macaque monkey. A subset (23%; n = 218) of the 928 SII region neurons [the same 928 n...

متن کامل

Myocardial Infarction in a Rhesus Monkey

Myocardial necrosis can be result from a number of causes including nutritional deficiencies, chemical and plant toxins, ischemia and metabolic disorder. The outcome of myocardial necrosis varies depending on the extent of the damage (Donald 2001, Jubb 1993, Radostits 1994, Vanvaleet 1986). Myocardial infarction without demonstrable of atherosclerosis were reported in a rhesus macaque (Gonder 1...

متن کامل

Grasping-related functional magnetic resonance imaging brain responses in the macaque monkey.

Research in recent decades has suggested the existence of a dedicated brain network devoted to the organization and execution of grasping, one of the most important and skilled movements of primates. Grasping an object requires the transformation of intrinsic object properties such as size, orientation, and shape into an appropriate motor scheme shaping the hand. Although electrophysiological r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013